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A statistically founded derivation of the quanta of energy is presented, which 
yields the Planck formula for the mean energy of the blackbody radiation 
without making use of the quantum postulate. The derivation presupposes an 
ensemble of particles and leads to a statistical interpretation of the Planck 
constant, which is defined and discussed. By means of the proposed interpreta- 
tion of h and as an application of it, the quantum uncertainty relation is derived 
classically and results as a statistical inequality. On the whole this paper is 
compatible with the statistical ensemble interpretation of quantum mechanics. 

1. I N T R O D U C T I O N  

As is well known,  the qua n t um  theory originated f rom the " q u a n t u m  
postulate,"  which was in t roduced by Planck in order to explain in a way 
compat ible  with experiment the then open problem of b lackbody  radiation. 
Planck postulated that energy is emitted or absorbed only in discrete 
quantities n . e ,  where n ranges over the positive integers; e =  h.~, the 
" q u a n t a  of  energy";  h represents the Planck constant  and ~ the frequency of  
emission (or absorpt ion)  of  energy. This is the qua n tum postulate,  which 
created a true revolution in physics and gave us an entirely new concept ion 
of  the microworld.  

Yet Planck himself was never completely satisfied with this new micro- 
physics, which could perhaps have been different if a different solution had 
been provided to the 1900 b lackbody  radiat ion problem. Popper  (1967) 
reminds us that the early quantum-mechanica l  problems from which the 
theory was spawned were of a clearly statistical character,  adding that 
statist ical  questions d e m a n d  statist ical  answers.  
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In this paper we intend to show that an alternative answer exists which 
leads to a statistical interpretation of the quanta of energy and the Planck 
constant without affecting the radiation law per se. The derivation presented 
herein indicates that the law could have been derived without the introduc- 
tion of the quan tum--o r  indeed any--postulate .  Also, by means of the 
statistical interpretation of h, the "uncertainty relation" emerges naturally 
as a statistical inequality. 

Before proceeding to the proposed derivation, we believe it would be of 
interest to recall in brief the original derivation of the quanta. 

2. T H E  ORIGINAL DERIVATION OF T H E  QUANTA 

The successive attempts of Planck to solve the blackbody radiation 
problem are clearly reproduced in Jammer (1966). The problem at issue was 
to find an expression for the mean energy ( E )  of a system consisting of N 
noninteracting particles (the molecules of the black body), N being very 
large, at constant temperature T and common frequency v. Planck consid- 
ered the thermodynamic relation 

d ( S )  = d ( E ) / T  (1) 

where ( S )  is the mean entropy, defined by the Boltzmann formula 

( S )  = (klog w ) / N  (2) 

with k the Boltzmann constant and w the thermodynamic probabilities (or 
weights) of the several microstates of the system which correspond to its 
macrostate. 

In order to evaluate w, Planck used an approximative method devised 
earlier by Boltzmann. Namely, he considered the total energy of the system 
E t to consist of n very small individual energy units of measure e, so that 

E t = n . e =  N.<E> (3) 

where n ranges over the positive integers. Because of (3), w can be calculated 
from 

( N + n - 1 ) !  ( N + n ) !  
W 

n ! ( N -  1)! n!N!  

with n, N very large numbers. Then by use of the Stirling formula 

log(x!)  = x l o g x  - x 
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for x = n / N  = ( E ) / e .  After introduction in (2) and differentiation, Planck 
got 

d ( S )  = k l o g  l + ( ( E ) / e )  (4) 
d(E) 

which by integration gives the known result 

( E )  = e / e  ~ /~r -  1 (5) 

The last equation had to agree with Wienn's experimental result and e had 
to be proportional to the frequency u. Therefore Planck put 

e = h-v (6) 

According to the Boltzmann approximation that had been used in the 
introduction of e in (3), Planck should, after the evaluation of the mean 
energy (5), consider the limit e -o 0 or h ~ 0, in order to find the true value 
of ( E )  = f (v ,  T). But this limit yields 

e 
lim = k T  
--, 0 e e / k T -  1 

This result holds true only for low frequencies; while if h is taken as very 
small but finite, then the fraction h v / k T  is considerable for high frequen- 
cies, and the relation (5) is in complete agreement with experiment for every 
value of v. Then Planck realized that he had to introduce the quantum 
postulate, and he did so "acting desperately," since "a  theoretical explana- 
tion had to be supplied, at all cost, whatever the price" (Jammer, 1966). 

3. QUANTIZATION OF PHASE SPACE WITHOUT THE 
QUANTUM POSTULATE 

In this and the next section we shall show how the same problem can 
be solved as a classical problem of statistical nature; there will be no need to 
postulate the quanta. We consider a statistical ensemble of N noninteracting 
particles at constant temperature T, considered as oscillators of common 
frequency g. We ask to find the mean energy of the ensemble. 

The state of the ensemble is specified by the probability density 

P( qt,q2 . . . . .  q/; Pl,  P2 . . . . .  P/) 
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of the 2f-dimensional phase space. The meaning of p is understood accord- 
ing to the equation 

8 N =  p (  q, . . . . .  q/; p ,  . . . . .  p f  ) 8q,  . . . S q f S p ,  . . . Spz (7) 

where 8 N  determines the number of particles with positions and momenta 
lying in a selected elementary finite range in phase space. 

If we look at the ensemble macroscopically, for N ~ oo we regard p and 
8N as continuous. In fact, in most cases we can put d N  instead of 8N and 
dql �9 . .  dp/ ins tead of 8ql �9 . .  8p/  in (7) and have a satisfactory approxima- 
tion. But, in reality, matter is not continuous, and there are experimental 
situations where the discrete nature of matter makes itself evident and the 
approximation to the continuum becomes unsupportable, e.g., at high 
temperatures or frequencies. In such cases we have to look at our ensemble 
"microscopically," i.e., take into account the discontinuity of matter. 

Therefore here the energy probability density is considered to be of the 
discrete canonical form 

p ( E , , )  = exp( - E , , / k T )  (8) 

where p (E , )  is understood as the probability of finding the energy E,, in the 
elementary range 8ql . . .  8p/. 

The required mean energy of the ensemble is given by the formula 

( E> = EE,,p( E , , ) /Ep(  E,,) (9) 
n t l  

In order to evaluate (9) we proceed as follows: We have to define a measure 
of the elementary range in phase space. This is accomplished if we quantize 
phase space by dividing it in properly selected equal cells of very small 
volume. Then we calculate the energy contained in every cell. Evidently 
because of the statistical nature of the problem, the so-selected phase-space 
"quantum" will depend on the density o(q;  p )  and will refer to the 
ensemble of particles and not to the individual particle. Let us therefore 
consider the variables 

6 q - S q i = q , - < q  ) and  8 p = - S p j = p j - ( p ) ,  i , j = l , 2  . . . . .  f 

(10) 

with <q>, <p> the averages of positions and momenta in the ensemble, 
respectively. 
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An appropriate quantization of phase space is obtained if we take the 
volume of the elementary cell to be 

o = l(SqSp)[ = ICov(q, P)I (11) 

where Cov(q, p) is the covariance of positions and momenta in the ensem- 
ble. We note that another possible choice of elementary volume could be 
8V = AqAp, with 

Aq = ( ( ( q i -  (q))2))  1/2 
and A p - - { ( ( p j - ( p ) ) 2 ) }  '/2 (12) 

representing, respectively, the standard deviations of positions and momenta. 
However, the inequality 

AqAp >1 ICov(q, P)I (13) 

states that the covariance is smaller and therefore more appropriate for our 
purpose. Also the inequality 

I (q , -  ~)(Pj - ~/)1 >/ICov(q, P)I (14) 

where (~, 77) is any fixed point, shows that the covariance is statistically the 
least area in phase space. 

The quantity o, defined in (11), is a constant with dimensions of action 
depending on the probability density p(q; p)  and assuming nonzero values 
whenever the q's and p's possess a joint probability density such that they 
are statistically dependent and correlated. In fact this is the case here; thus o 
is a nonvanishing quantity. (For this and other statistical concepts or results 
used through this paper, see any standard book on probability or statistics, 
as, e.g., Papoulis, 1965; Weatherburn, 1968). 

The above-mentioned properties of o justify its selection as the "quan- 
tum of phase space." 

4. THE ELEMENTARY ENERGY OR "QUANTUM 
OF ENERGY" 

The particles which form a blackbody are molecules of matter perform- 
ing vibrating motion. Planck considered them to be harmonic oscillators, 
called by him "resonators." This approach is by no means artificial, because 
the orbits of vibration are simple closed curves in phase space and can be 
successfully approximated by the elliptic orbits of the harmonic oscillator, 
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by means of the theory of small oscillations. Namely, we consider the 
energies of the particles to be of the form 

with 

p2 q2 ( d2V I 
E=2-~m + T k dq2 ] q_O (15) 

The area of an infinitesimal ring between ellipses with parameters E 

and integration of (17) gives 

3q3p = 2_._~ [ E( q, p ) -  E((q),  ( p ) ) ]  (18) 

with 3q, 3p defined in (10). 
Taking the absolute averages of both sides of (18) we obtain for the 

constant o 

o=l(3q3p)[=27r[(E(q,p))  E((q) ,(p))[  27r . . . . .  e (19) 
tO 6) 

where the constant quantity 

e = [ ( f ( q ,  p ) )  - E ( ( q ) ,  ( p ) ) [  (20) 

equals 

~= 2 ~ + - -  (21) Op ](q),(p) Oq z ](q),(p) 

with Aq and Ap the standard deviations of q and p defined in (12), and 
(Aq)2,(Ap) 2 their variances. Because of (15) and (16), equation (21) be- 
comes 

e = (Ap)Z/2m + m~o2(Aq)2/2 (22) 

dq dp = 27r dE/to (17) 

d2VI = r n ' w 2 > 0  (16) 
-~-5-q2 ] q=O 

and E + dE is 
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The constant temperature of the ensemble or, equivalently, the canoni- 
cal distribution of energies, implies that the variances (Aq) 2 and (Ap)  2 in 
(22) are very small, and so is the energy e compared to E. Consequently, we 
can consider the individual energies E as multiples of the "elementary" 
energy e and put 

E=-E ,=n .e ,  n = 0 , 1 , 2  .. . .  (23) 

Also from (19), (20), and ~o = 27ru, we have for the energy e 

e = o" u (24) 

Introduction of (23), (24) in the expression of the mean energy (9), yields 
the result of Planck (5), namely 

(E)  = ou/e ~ 1 

and the limit e---, 0 or o ~ 0 corresponds to the continuum and gives the 
known classical result 

tim ( E )  = kT 
o--*0 

5. STATISTICAL INTERPRETATION OF THE PLANCK 
CONSTANT:  DISCUSSION 

Comparison of the derived relation e = or. u with Planck's e = h- u sug- 
gests that o = h or, at least, o = h. It is of interest to note that Planck, in a 
paper in 1912, interpreted the constant h as " the quantum of phase space" 
(Jammer, 1966), defined by the relation 

E + e  

g dq dp = h 
E 

and not as " the quantum of action," because action is a nonconservative 
physical quantity and the existence of a universal constant of action is not 
physically justified. 

The derivation in the previous sections shows that the quanta of energy 
and the Planck constant can be derived by means of statistics in a straight- 
forward way such that there is no need to postulate them. Therefore we can 
assume that the constant h and the energy quantum e characterize or 
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describe a statistical ensemble of particles and not an individual particle. 
Especially h can be viewed as a statistical constant, characteristic of the 
microworld, with the physical significance that of providing a measure of 
the fundamental "distance" of phase space for microsystems. 

This conclusion is compatible with the statistical interpretation of 
quantum mechanics, especially concerning the arguments raised by Popper 
(1967) and Ballentine (1970) against the usual "orthodox" interpretation of 
the Heisenberg relation AqAp >1 h as " the uncertainty principle." If we 
accept the statistical interpretation of h, namely, 

h = o = ICov(q, ?)1 

then the Heisenberg relation coincides essentially with the statistical in- 
equality (13), i.e., 

AqAp >1 ICov(q, P ) I -  h 

The constant h is considered as characteristic of microscopic statistical 
ensembles which can be either space ensembles or time ensembles, as 
defined by Margenau (1963). When the probability density is such that the 
positions and momenta are correlated, the constant o is then a nonvanishing 
quantity, and this is true in classical statistical mechanics as a rule. The only 
exception is the extreme classical case of the ideal gas, where the positions 
are described by the uniform distribution and tile marginal probability 
densities in q and in p are statistically independent (Beck, 1976). Evidently 
the case o ~ 0 corresponds to purely "classical" ensembles where the 
approximation to the continuum applies well, such as in the case of the ideal 
gas. 

The absolute size of o will naturally depend on the distribution. We 
may say that a "quantum system" (or, more precisely, a "quantum statisti- 
cal ensemble") is one for which the constant o is of the order of magnitude 
of h. 

As an application, we give in the next section a classical derivation of 
the generalized uncertainty inequality originally proved by Robertson (1929). 

6. THE UNCERTAINTY RELATION 

Let A and B be two physical quantities, expressed as functions of the 
positions and momenta not depending explicitly on time, i.e., 

A=f(q,p) and B=g(q,p) 
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with f and g assumed well-behaved functions of the variables q and p, 
defined in a domain D of phase space and functionally independent in D. 
This implies that their Jacobian determinant is nonzero in D, that is 

j(q,p)= Of Og Og Of 
Oq Op Oq Op = (A, S ) *  0 (25) 

where (A, B) is the Poisson bracket of A and B. 
If (25) holds, then to any elementary area in the AB plane corresponds 

an elementary area in the domain D of phase space, namely, 

dA dn = l( A, n )l. dq dp (26) 

Before proceeding, let us consider the position and momentum as two 
random variables, and the domain D as described by a probability density 
p(q, p) such that q and p are correlated, i.e., Cov(q, p) * 0. 

The mean values of A and B expressed in terms of p(q, p) are by 
definition 

(A) = g f ( q ,  P)O(q, P) dqdp = f(qo, Po) ] 
D I(qo 

(B) = f f  g(q, p)p(q, p) dqdp = g(qo, Po) "d 
,Po)~D 

where the integrals are replaced by sums whenever the variables q and p are 
of the discrete type. 

Integration of (26) yields 

(A - ( A > ) ( B - ( B > ) =  fqf"l(A, w)laqap 
qo Po 

(27) 

By use of the mean value theorem, we write (27) as 

( A - ( A ) ) ( B - ( B ) ) = ( l ( A , B ) l ) . ( q - q o ) ( p - p o )  (28) 

Taking the absolute averages of (28), we get 

[ ( (A-(A)) (B-(B)) )[=([(A,B)[) . [ ( (q-qo)(p-po))  [ (29) 

in which the left-hand side is recognized as the covariance of A and B. 
Hence we put 

I((A - (A))(B - (B)))[ = ICov(A, B)[ (30) 
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The known inequalities 

(I(A, B)I) >/I((A, B))[ (31) 

I((q - q0)( p - p0))l >/ICov(q, p)[ = o (32) 

,aAAB >/ICov(A, B)I (33) 

and (30), introduced in (29) yield the result 

AA AB >II((A, B))l.o (34) 

The above inequality states that the product of the standard deviations 
of any two canonically conjugate physical quantities A = f(q, p) and B = 
g(q, p) in terms of the density o(q, P), has a lower bound if and only if q 
and p are correlated. In this case the bound depends on the given probabil- 
ity density. This is a classical result, which is valid also for macroscopic 
physical systems, as e.g., cars, if we are given their joint distribution in q and 
in p on, say, weekend vehicular traffic. 

In order to have inequality (34) for quantum systems we consider o = h 
and translate the Poisson bracket into Hilbert space language, by use of the 
Dirac correspondence rule (A, B)--, (i/h)[A, B], as the classical commuta- 
tor. Then (34) becomes the Robertson generalized "uncertainty" relation, 
namely, 

AAAB>~I<[A,B]>I (35) 

where now the averages are understood by means of the quantum state 
function ~k or the corresponding state statistical operator. 

The derivation of the uncertainty relation is compatible with the 
statistical interpretation of quantum mechanics, and is a "statistical disper- 
sion principle" (Ballentine, 1970). The classical probability density p(q, p) 
as well as the quantum state ~k are taken as describing a statistical ensemble 
of physical systems. 
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